Improved Estimation of the Initial Number of Susceptible Individuals in the General Stochastic Epidemic Model Using Penalized Likelihood
نویسنده
چکیده
The initial size of a completely susceptible population in a group of individuals plays a key role in drawing inferences for epidemic models. However, this can be difficult to obtain in practice because, in any population, there might be individuals who may not transmit the disease during the epidemic. This short note describes how to improve the maximum likelihood estimators of the infection rate and the initial number of susceptible individuals and provides their approximate Hessian matrix for the general stochastic epidemic model by using the concept of the penalized likelihood function. The simulations of major epidemics show significant improvements in performance in averages and coverage ratios for the suggested estimator of the initial number in comparison to existing methods. We applied the proposed method to the Abakaliki smallpox data.
منابع مشابه
ON THE STABILITY AND THRESHOLD ANALYSIS OF AN EPIDEMIC MODEL
We consider a mathematical model of epidemic spread in which the population is partitioned into five compartments of susceptible S(t), Infected I(t), Removed R(t), Prevented U(t) and the Controlled W(t). We assume each of the compartments comprises of cohorts of individuals which are identical with respect to the disease status. We derive five systems of equations to represent each of the ...
متن کاملPenalized Bregman Divergence Estimation via Coordinate Descent
Variable selection via penalized estimation is appealing for dimension reduction. For penalized linear regression, Efron, et al. (2004) introduced the LARS algorithm. Recently, the coordinate descent (CD) algorithm was developed by Friedman, et al. (2007) for penalized linear regression and penalized logistic regression and was shown to gain computational superiority. This paper explores...
متن کاملRidge Stochastic Restricted Estimators in Semiparametric Linear Measurement Error Models
In this article we consider the stochastic restricted ridge estimation in semipara-metric linear models when the covariates are measured with additive errors. The development of penalized corrected likelihood method in such model is the basis for derivation of ridge estimates. The asymptotic normality of the resulting estimates are established. Also, necessary and sufficient condition...
متن کاملDetection of Outliers and Influential Observations in Linear Ridge Measurement Error Models with Stochastic Linear Restrictions
The aim of this paper is to propose some diagnostic methods in linear ridge measurement error models with stochastic linear restrictions using the corrected likelihood. Based on the bias-corrected estimation of model parameters, diagnostic measures are developed to identify outlying and influential observations. In addition, we derive the corrected score test statistic for outliers detection ba...
متن کاملSentiment Shock and Stock Price Bubbles in a Dynamic Stochastic General Equilibrium Model Framework: The Case of Iran
In this study, a model of Bayesian Dynamic Stochastic General Equilibrium (DSGE) from Real Business Cycles (RBC) approach with the aim of identifying the factors shaping price bubbles of Tehran Stock Exchange (TSE) was specified. The above-mentioned model was conducted in two scenarios. In the first scenario, the baseline model with sentiment shock was examined. In this model, stock price bubbl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
دوره 2014 شماره
صفحات -
تاریخ انتشار 2014